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Abstract—These instructions In the present study, an analytical solution of the 
magnetohydrodynamic steady incompressible laminar boundary layer flow with a velocity slip on the 
wall-boundary of a cone due to a point sink at the vertex has been studied in the presence of heat 
transfer, mass transfer and magnetic parameters by using the homotopy analysis method (HAM). The 
HAM produces an analytical solution of the governing self-similar non-linear two-point boundary layer 
equations with great precision. Further, the effects of the suction/injection, velocity slip and magnetic 
parameters over the given flow-field have been discussed. The effects of Prandtl number on 
temperature and Schmidt number on concentration profiles have also been studied graphically. The 
present results have been compared numerically and graphically with the corresponding results 
obtained by other methods, an excellent agreement has been found between them. The accuracy in the 
result shows that the HAM aided by computing software like MATHEMATICA, Maple, etc. is very 
proficient and easily applicable technique for solving similarity equations with strong non-linearity. The 
analytical solution obtained by HAM is very near to the exact solution for a properly selected initial 
guess, auxiliary and convergence control parameters and for higher orders of deformations.  
 
Index Terms— MHD flow, homotopy analysis method (HAM), boundary layer flow, suction 
and injection, velocity slip. 

I. INTRODUCTION 

The boundary layer flow in a cone due to a point sink at the vertex simulates the flow problems in nozzles wherein 
the hole at the vertex serves as the three-dimensional point sink. Despite the significance of such type of problems, 
the literature available pertaining to this kind of flow is not enough. However, a few relative studies in this 
connection have been carried out by many researchers. As the investigation of a boundary layer flow of an 
electrically conducting fluid on a cone due to a point sink with an applied magnetic field is significant in the study 
of conical nozzle or diffuser flow problems, many a research workers have given their valuable contributions to 
have an elaborate analysis of such type of problems. In this context, the contribution made by Rosenhead [1] is 
worthwhile mentioning. Rosenhead [1] presented the similarity solution for the heat transfer analysis of the axi-
symmetric flow inside a cone due to a point sink. Ackerberg [2] presented the series solution for the converging 
motion of viscous fluid inside a cone. Choi and Wilhelm [3] made a thorough study of the self-similar magneto-
hydrodynamic diffuser flows with induced magnetic fields. Takhar et al. [4] extended the problem for an 
electrically conducting fluid and discussed the effects of heat and mass transfer in the presence of an applied 
magnetic field. Eswara et al. [5] investigated the same problem for the transient case. Eswara and Bommaiah [6] 
re-investigated     the    problem    by    taking   into    account     the     temperature     dependent     fluid    viscosity. 
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The objective behind the present work is to extend the problem of Takhar et al. [4] by taking into consideration the 
momentum slip boundary condition on the wall boundary of the cone. While studying the Falkner-Skan flow over 
a wedge with slip boundary conditions, Martin and Boyd [7] proved that the slip conditions on the wall boundary 
must be added to correctly predict the local wall shear stress and heat transfer rate in boundary layer analysis. This 
is particularly necessary for the rarefied flow conditions which have several physical applications such as in 
aerosol science [8], in microchannels [9] and in micro-nano-air vehicles [10]. The flow-slip and temperature jump 
effects over a specific wedge-shaped surface has been studied by Turkyilmazoglu [11]. Recently, Turkyilmazoglu 
[12] extended the flow model of Magyari [13] set up for moving convergent channel by taking into account the 
momentum and thermal slip boundary conditions on the boundary of the convergent channel. Inspired by the work 
of Turkyilmazoglu [12], in the present analysis, we have revisited the work of Takhar et al. [4] by including the slip 
conditions on the wall boundary of the cone. The problem, which is governed by non-linear equations with two-
point boundary conditions, has been solved by using HAM. Symbolic computation software and high performance 
computers have been used to derive the analytic solutions. The flow characteristics have been analyzed 
numerically and graphically in order to study the effects of heat and mass transfer, slip flow and magnetic 
parameters on velocity, temperature and concentration profiles. Our results obtained by using HAM for ߣ = 0 
have been found in excellent agreement with the corresponding results of Takhar et al. [4] who tackled the problem 
by using shooting technique in conjunction with the Runge-Kutta fourth order method. When ߣ is set to zero, the 
flow solutions in Ref. [4] are recovered. 
The strength of HAM developed by Liao [14] in the year 1992 lies in the fact that it is proficient enough to lead to 
convergent analytic series solutions of strongly non-linear problems faster than any other existing methods, and is 
completely independent of the presence of small/large physical parameter/s in the problem [15]. This strength of 
HAM makes it superior to all other existing conventional perturbation methods such as Adomian decomposition 
method [16,17,18], ߜ-expansion method [19] and Lyapunov artificial small parameter method [20] which may not 
be valid for solving strong non-linear problems due to the divergent nature of their obtained solution series. Liao 
[21] also showed that these methods are simply special cases of the HAM. Likewise, He's homotopy perturbation 
method (HPM) [22,23] is also a special case of the HAM (cf. Liao [24] and Turkyilmazoglu [25]). On account of 
the above-mentioned facts, the HAM has been applied to an extensive variety of non-linear problems in branches 
of science and engineering ever since it was first introduced in the year 1992. The problems (see the References 
[26,27,28]) which mainly deal with the flows of non-Newtonian fluids and the problems (see References [29,30]) 
which mainly govern the non-linear problems with heat transfer and radiation effects, have been tackled by using 
the HAM). 
  

 
Figure 1:Schematicdiagram oftheflowmodel 

II.  GOVERNING EQUATIONS 

Here the steady, laminar and axi-symmetric boundary layer flow of an incompressible and electrically conducting 
fluid inside a cone at rest with a three-dimensional sink at its vertex has been considered by taking into 
consideration the slip-flow condition on the wall boundary of a cone. The magnetic field ܤ଴  applied in ݖ-direction 
has been taken as fixed relative to the fluid. The magnetic Reynolds number is assumed to be small so as to neglect 
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the induced magnetic field as compared to the applied magnetic field. The temperature and concentration at the 
wall of the cone and at the free-stream have been maintained at constant level. To provide significance to the 
investigation, the effects of suction/injection, slip-flow and magnetic parameters have been included in the 
analysis. The terms representing the Hall and dissipation effects have been neglected. It is further assumed that the 
injected gas has a static temperature equal to the wall temperature, and it has the same physical properties as the 
boundary layer gas possesses. 
The flow model has been presented in the schematic diagram given in the Fig. 1. The basic boundary layer 
equations governing the flow-field are therefore (cf. Takhar et al. [4]): 

௥(ݑݎ) + ௭(ݓݎ) = 0 (1) 

௥ݑݑ ௭ݑݓ+ = ௥݌ଵିߩ− + ௭௭ݑߥ −  (2) ݑ଴ଶܤߪଵିߩ

ݑ ௥ܶ + ݓ ௭ܶ = ߙ ௭ܶ௭ (3) 

௥ܥݑ ௭ܥݓ+ =  ௭௭ (4)ܥܦ

where 

௥݌ଵିߩ− = ܷܷ௥ + ܷ			,଴ଶܷܤߪଵିߩ = −
݉ଵ

ଶݎ
		 , ݉ଵ > 0 (5) 

Here the subscripts ݎ and ݖ denote derivatives with respect to ݎ and ݖ, respectively, and ݌ represents the static 
pressure. The boundary conditions are given by 

,ݎ)ݑ 0) = ݈ଵ(ݎ)ݑ௭(ݎ, 0), ,ݎ)ݓ 0) = ௪ݓ , ,ݎ)ܶ 0) = ௪ܶ, ,ݎ)ܥ 0) =  ௪ܥ

(∞,ݎ)ݑ = ܷ, (∞,ݎ)ܶ = ஶܶ,			(∞,ݎ)ܥ =  .		ஶܥ
(6) 

We now use the following similarity transformations in Eqs. (1)-(6): 
 

ߟ = ݉ଵ

ଵ
ଶݖ/(ݎ2߭ଶ)

ଵ
ଶ,			ݑݎ = ௭߰ , ݓݎ = − ௥߰ ,			߰ = −(2݉ଵ߭ݎ)

ଵ
ଶ݂ 

 

ݑ = ܷ݂ᇱ(ߟ), ݓ = ቀ݉ଵ߭
ଷൗݎ2 ቁ

ଵ
ଶ (݂ −  (ᇱ݂ߟ3

 

(ܶ − ஶܶ)/	( ௪ܶ − ஶܶ	) = ܥ)			,(ߟ)݃ − ௪ܥ)	/(ஶܥ − (	ஶܥ =  (ߟ)ܩ

 

ܯ = ݎܲ,	߷݉ଵ	/	ଷݎ଴ଶܤߪ2 = ,ߙ/߭	 ܵܿ = ௪ܭ,ܦ/߭ = ߣ,ଵ/ଶ(ଷ/݉ଵ߭ݎ2)௪ݓ = ݈ଵ(ݎ)/(ݎ2߭ଷ)
ଵ
ଶ			. 

 

 

 

(7) 

 

 

 

Her	ݎ is the distance along the cone from the vertex and ݑ is the corresponding velocity component along ݎ 
direction, whereas	ݖ is the distance perpendicular to the cone; ݓ is velocity component along ݖ direction; ܴ is 
radius of the cone given by ܴ = ݎ sin߶ where ߶ is the semi-vertical angle of the cone (see Fig. 1); ߰ is the 
dimensional stream function and ݂ represents the corresponding dimensionless stream function; ܥ is the 
dimensional concentration and ܩ is the corresponding dimensionless concentration; ܶ is the dimensional 
temperature while ݃ represents dimensionless temperature; ߪ, ߷ and ߭ are the electrical conductivity, density and 
kinematic viscosity, respectively; ߟ represents similarity variable; ܤ଴stands for magnetic field; ܦ and ߙ represent 
the binary diffusion coefficient and thermal diffusivity, respectively;݉ଵ is the strength of point sink; ܯ is the 
magnetic parameter; ܷ represents the inviscid flow velocity; ܭ௪ denotes the mass transfer parameter; ݈ଵ(ݎ) is slip 
factor;ߣ is slip parameter, and prime denotes derivatives with respect to ߟ. 

݂ᇱᇱᇱ − ݂݂ᇱᇱ + 4(1− ݂ᇱ)ଶ −1)ܯ+ ݂ᇱ) = 0 (8) 

݃ᇱᇱ ᇱ݂݃ݎܲ− = 0 (9) 

ᇱᇱܩ − ᇱܩ݂ܿܵ = 0 (10) 

Also, the boundary conditions (6) get reduced to 
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݂(0) = ௪ܭ , ݂ᇱ(0) = (∞)݂ᇱ			ᇱᇱ(0),݂ߣ = 1 (11) 

݃(0) = 1, ݃(∞) = 0 (12) 

(0)ܩ = 1, (∞)ܩ = 0 (13) 

where ܵܿ and ܲݎ are Schmidt and Prandtl numbers, respectively; the subscripts ݓ denote conditions at the wall 
and ∞ denote conditions in the free stream; and prime denotes derivative with respect to ߟ. 
It is here to be noted that the above mentioned boundary layer approximation is not valid in the immediate 
neighbourhood of the hole (cf. Rosenhead [1], p.428). Also, for the mathematical analysis, the mass transfer 
parameter ܭ௪ has been treated as constant (cf. Takhar et al. [4]). Further, the magnetic parameter ܯ can be treated 
as constant locally for fixed ݎ, as it was first considered by Takhar et al. [31] and then by Takhar and Nath [32]. 
Moreover, the similarity reduction reported in this work is constant only when the slip parameter ߣ does not 
depend on ݎ and hence requiring that ݈ଵ(ݎ) is proportional to ݎଷ/ଶ. The value of ݂ᇱᇱ(0) is of physical interest here, 
because it is associated with the local skin friction. Also, in a sink flow, ܭ௪ < 0 is refereed to as suction and 
௪ܭ > 0 as injection (cf. Takhar et al. [4] and Schlichting and Gersten [33], pp. 294-298). 

III. HOMOTOPYANALYSIS 

Solution for skin friction (Eqs. (8) and (11)) 
In order to find the analytic solution of the Eq. (8) along with the boundary conditions given by Eq. (11), we first 
select the linear operator ℒ as 

ℒ =
߲ଷ

ଷߟ߲
+ ߛ

߲ଶ

ଶߟ߲
		, (14) 

and we choose ݍ as an embedding parameter. We, now, construct the following zeroth-order deformation equation: 

(1− −(ݍ,ߛ,ℏ,ߟ)݂]ℒ(ݍ ଴݂(ߟ)] = ,		[(ݍ,ߛ,ℏ,ߟ)݂]ℏℵݍ ߟ ∈ [0, +∞),ℏ ≠ 0, ߛ > 0, ݍ ∈ [0,1] (15) 

with boundary conditions 

݂(0,ℏ,ߛ, (ݍ = ௪ܭ 		,݂ᇱ(0,ℏ,ݍ,ߛ) = ,ᇱᇱ(0)݂ߣ ݂ᇱ(∞,ℏ,ߛ, (ݍ = 1, ℏ ≠ ߛ,0 > ݍ,0 ∈ [0,1] (16) 

where the prime denotes the partial derivative w.r.t. ߟ and 

ℵ[݂(ߟ,ℏ,ߛ, [(ݍ =
߲ଷ݂(ߟ,ℏ,ߛ, (ݍ

ଷߟ߲
− ,ߛ,ℏ,ߟ)݂ (ݍ

߲ଶ݂(ߟ,ℏ,ߛ, (ݍ
ଶߟ߲

	 , +4ቆ1− ቆ
,ߛ,ℏ,ߟ)݂߲ (ݍ

ߟ߲
ቇ
ଶ

ቇ 

−൬1ܯ+
,ߛ,ℏ,ߟ)݂߲ (ݍ

ߟ߲
൰		. 

(17) 

When ݍ = 0, we have 

ℒ[݂(ߟ,ℏ,ߛ, −(ݍ ଴݂(ߟ)] = 0, ⇒ ,ߛ,ℏ,ߟ)݂ 0) = ଴݂(ߟ)		, ߟ ∈ [0, +∞),ℏ ≠ ߛ,0 > 0 (18) 

and when ݍ = 1, we have 

0 = ℵ[݂(ߟ,ℏ,ߛ, 1)] 		⇒ ,ߛ,ℏ,ߟ)݂ 1) = ,	(ߟ)݂ ߟ ∈ [0, +∞),ℏ ≠ 0, ߛ > 0 (19) 

Hence as ݍ varies from 0 to 1, ݂(ߟ,ℏ,ߛ, ݂ varies from initial solution (ݍ ଴(ߟ) to the exact solution ݂(ߟ). 
Here we choose ଴݂(ߟ), the initial guess, such that it satisfies ℒ[ ଴݂(ߟ)] = 0 and the boundary conditions (11). We 
select 

ℒ[ܥଵ + ߟଶܥ + [ଷ݁ିఊఎܥ = 0 (20) 

and 

଴݂(ߟ) =
݁ିఊఎ − 1
1)ߛ + (ߣߛ ௪ܭ+ + ,	ߟ ߛ > 0	. (21) 

We here assume that the ݇ݐℎ-order deformation derivative given by 
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଴݂
[௞](ߟ,ℏ,ߛ) =

߲௞݂(ߟ,ℏ,ߛ, (ݍ
௞ݍ߲ ቤ

௤ୀ଴

	 , (݇ ≥ 1) 
(22) 

exists. By using Eq. (18) and the Taylor's formula, we have 

,ߛ,ℏ,ߟ)݂ (ݍ = ଴݂(ߟ) +෍൥ ଴݂
[௞](ߟ,ℏ,ߛ)

݇! ൩
ାஶ

௞ୀଵ

௞ݍ 		. 
(23) 

We here assume that both ℏ and ߛ are properly chosen in such a way that the series (23) is convergent at ݍ = 1. 
From Eqs. (19) and (21) at ݍ = 1, we find the following relationship between known initial solution ଴݂(ߟ) and the 
unknown solution ݂(ߟ): 

(ߟ)݂ = ଴݂(ߟ) +෍ ଴݂
[௞](ߟ,ℏ,ߛ)

݇!

ାஶ

௞ୀଵ

= ෍߮௞(ߟ,ℏ,ߛ)
ାஶ

௞ୀ଴

	, 
(24) 

where we define 

߮଴(ߟ,ℏ,ߛ) = ଴݂(ߟ), ߮௞(ߟ,ℏ,ߛ) + ଴݂
[௞](ߟ,ℏ,ߛ)

݇!
	 , ݇ ≥ 1		. 

(25) 

In order to find the ݉th -order deformation equation, we first differentiate Eqs. (15) and (16) ݉ times w.r.t. ݍ and 
then we set ݍ = 0, and finally we divide it by ݉!, to obtain 

ℒ[߮௠ − ߯௠߮௠ିଵ] = ℵ௠(ߟ)	, ݉ ≥ 1, ߟ ∈ [0, +∞), (26) 

with the corresponding boundary conditions 

߮௠(0,ℏ,ߛ) = ߮௠ᇱ (+∞,ℏ,ߛ) = 0	,߮௠ᇱ (0,ℏ,ߛ) = ݉		(ߛ,0,ℏ)′′௠߮ߣ ≥ 1,ℏ ≠ ߛ,0 > 0, (27) 

and 

ℵଵ(ߟ) = ℏ ቂ߮଴ᇱᇱᇱ(ߟ,ℏ,ߛ) −߮଴(ߟ,ℏ,ߛ)߮଴ᇱᇱ(ߟ,ℏ,ߛ) + 4ቀ1 − ൫߮଴′(ߟ,ℏ,ߛ)൯
ଶቁ

൫1ܯ+ −߮଴′(ߟ,ℏ,ߛ)൯ቃ	,		 
(28) 

ℵ௠(ߟ) = ℏ ൥߮௠ିଵ
ᇱᇱᇱ ෍−(ߛ,ℏ,ߟ) ߮௠ିଵି௞(ߟ,ℏ,ߛ)߮௞ᇱᇱ(ߟ,ℏ,ߛ)

௠ିଵ

௞ୀ଴

+ 4 ෍߮′௠ିଵି௞(ߟ,ℏ,ߛ)߮௞ᇱ (ߛ,ℏ,ߟ)
௠ିଵ

௞ୀ଴

൫1ܯ+ −߮଴′(ߟ,ℏ,ߛ)൯൩	, 

(29) 

where prime denotes the partial derivative w.r.t. ߟ. 
Using Eqs. (21) and (28), we can first calculate ℵଵ(ߟ) and then by solving linear equation (26) with boundary 
conditions (27), we can find ߮ଵ(ߟ,ℏ,ߛ). In the similar manner, we can calculate 2(ߟ) by using Eq. (29) and then 
find ߮ଶ(ߟ,ℏ,ߛ), and so on. 

IV. CONVERGENCEOF THE ANALYTICAL SOLUTION 

As suggested by Liao [21], the auxiliary parameter ℏ plays a significant role in controlling the convergence and the 
rate of approximation for the HAM. It is also to be noted that the HAM provides a great deal of flexibility and 
freedom for choosing appropriate values of ℏ and ߛ so as to ensure the convergence of the solution, obtained in the 
form of infinite series, to ݂(ߟ). To choose ℏ, Liao introduced the concept of ℏ -curve that gives an admissible 
range, called convergence region, for the selection of the suitable values of ℏ. It is here to be emphasized that there 
exists a value of parameter ߛ for every ℏ belonging to the convergence region which is the most suitable value in 
the sense that it guarantees the fastest convergence of the given series. 
In this context, it is worth mentioning that Turkyilmazoglu [34] has also proposed a new and novel way of finding 
the optimum value of convergence control parameter ℏ to ensure the convergence of the HAM series in a fastest 
manner. The proposed method constitutes an alternative to the classical ℏ -level curves method (refer Liao [21]) 
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and the squared residual approach proposed by Liao [35] for the determination of optimal value of the convergence 
control parameter. 
In the present analysis, the values of ݂ᇱᇱ(0) for each particular solution of the distinct magnetic parameter ܯ and 
mass transfer parameter ܭ௪ have been found by way of selecting suitable values of ℏ and ߛ with the help of ℏ -
curve given in Fig. 2. These values have been found after appropriate orders of approximations. These values agree 
well with the corresponding numerical values of Takhar et al. [4] who tackled the problem by shooting method in 
conjunction with Runge-Kutta fourth order method 
 

 
Figure 2:ℏ -curvefor ܯ = ௪ܭ,1 = ߣ,2− = 0 andߛ = 3 

V. Solution For Temperature And Concentration (Eqs. (9)-(13)) 

The heat and concentration equations can now easily be solved, for the velocity Eq. (8) with boundary conditions 
(13) already possesses a suitable and accurate solution. It is very much precise to obtain the solution of Eq. (9) by 
using boundary conditions (12). TABLE I. VALUES OFSKINFRICTION FORDIFFERENTVALUES 
OFܯWHEN ܭ௪ > 0AND ߣ = 0 

VI. RESULTS AND DISCUSSION 

The numerical values of the skin-friction parameter ݂ᇱᇱ(0) for different values of magnetic parameter ܯ and mass 
transfer parameter ܭ௪ (for suction and injection both) have been calculated, and are given in the Tables 1 and 2. 
From Table 1, it is obvious that the skin-friction parameter ݂ᇱᇱ(0) increases along with the increasing values of the 
mass suction parameter ܭ௪(< 0) and magnetic parameter ܯ. From the Table 2, it is clear that the skin-friction 
parameter ݂ᇱᇱ(0) increases along with the increasing values of the magnetic parameter ܯ, but decreases with the 
increasing values of the mass injection parameter ܭ௪(> 0). The reason for such a behaviour is that both the 
suction and magnetic parameters reduce the thickness of the momentum boundary layer which results in an 
increase in skin-friction. The effect of injection is just opposite. 

TABLE I:VALUESOF݂ᇱᇱ(0)FORDIFFERENTVALUESOFM WHENܭ௪ < 0ANDߣ = 0 

M Kw Present Thakaretal. [4] 

0 -2 3.5211 3.5182 

-1 2.8517 2.8772 

0.5 -2 3.6172 3.6162 

-1 2.9554 3.0231 

1 -2 3.7098 3.7124 

-1 3.0542 3.1121 

 
The numerical values of the skin-friction parameter ݂ᇱᇱ(0) for the present case and for the case of Takhar et al. [4] 
have been given in the Tables 1 and 2 for different values of mass suction/injection and magnetic parameters. 
These results are in excellent agreement with each other. The mass flux diffusion parameter (−݃′(0)) have been 
plotted in Fig. 3 for different values of the magnetic and mass transfer parameters. The graphs thus obtained exhibit 
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excellent agreement with the corresponding graphical results obtained by [4] who visited the problem in the 
absence of slip parameter (ߣ = 0). 
From the Fig. 3, it is evident that the heat transfer parameter (−݃′(0)) decreases for increasing values of the 
magnetic parameter but increases with increasing values of mass suction (ܭ௪ < 0). On the other hand, the 
parameter (−݃′(0)) decreases with the increasing values of both the magnetic and mass injection parameters. As a 
result, the suction (ܭ௪ < 0) reduces the thermal boundary layers, whereas the injection (ܭ௪ > 0) and the magnetic 
parameters increase them. 
 

TABLE II:VALUESOF݂ᇱᇱ(0)FORDIFFERENTVALUESOFܯ WHENܭ௪ > 0ANDߣ = 0 

M Kw Present Thakaretal. [4] Rosenhead [1] 

0 0 2.2721 2.2728 2.273 
1 1.7861 1.7505 - 
2 1.4167 1.4121 - 

0.5 0 2.3827 2.392 - 
1 1.9117 1.973 - 

2 1.5232 1.5529 - 

1 0 2.4604 2.4552 - 
1 2.0158 2.0825 - 
2 1.6252 1.6345 - 

 
 

 
Figure3:VariationofheattransferandmassdiffusionparameterswithKw for 

M=0,1,2 andPr=Sc=0.7,λ=0(Comparisonwith[4]) 

It is here to be noted that the mass flux diffusion parameter (−(0)′ܩ) is similar to the heat transfer parameter 
(−݃′(0)). So, the parameter (−(0)′ܩ) will exhibit similar behaviour as (−݃′(0)) shows in Fig. 3. 
For a fixed value of slip parameter, from Fig. 4, it is evident that the velocity profiles exhibit an increasing trend 
with increasing values of the magnetic parameter (ܯ) in both the cases of suction and injection. 
From Fig. 4, it is also clear that the velocity profiles due to suction (ܭ௪ < 0) are steeper than those due to injection 
௪ܭ) > 0). 
As the velocity increases with an increase in magnetic parameter (ܯ), the thickness of the momentum boundary 
layer also decreases. This happens due to the Lorentz's force arising from the interaction of the magnetic and 
electric fields during the motion of the electrically conducting fluid. 
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Figure4:VariationofvelocityprofileswithKw (−2,0,2),λ=0.1forM=1,2 

In Fig. 5, the nature of temperature profiles with the Prandtl number (ܲݎ) for a fixed value of magnetic parameter 
ߣ .has been studied in the absence of the slip effect (i.e (ܯ) = 0). From the Fig. 5, it is clear that the Prandtl 
number ܲݎ and hence the Schmidt number ܵܿ, respectively, have significant effects on temperature and 
concentration profiles. Both ܲݎ and ܵܿ, respectively, increase the temperature and concentration profiles in case of 
injection. An opposite trend is observed in case of suction. 
 

 
Figure5:VariationoftemperatureprofilesforM=1,Pr(=0.7,7),λ=0,and 

Kw(=−2,0,2) 

Fig. 6 depicts the effect of slip parameter ߣ on velocity profile in presence of magnetic field. It is evident that the 
velocity profiles exhibit an increasing trend with increasing values of the slip parameter (ߣ) in both the cases of 
suction and injection. 

 
 

Figure 6:VariationofvelocityprofileswithKw (−2,0,2)forλ=0.1,0.2,0.3 andM=1 
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VII. CONCLUDINGREMARKS 

Our results for ߣ have been found in good agreement with those obtained by Takhar et al. [4] which itself verifies 
the great potential and validity of the HAM. 
The skin-friction increases with increasing magnetic field. The skin-friction is greater for suction parameter 
௪ܭ < 0 as compared to injection parameter ܭ௪ > 0. 
The skin-friction (݂ᇱᇱ(0)), heat transfer parameter (−݃′(0)) and mass flux diffusion parameter (−(0)′ܩ) decrease 
by injection ܭ௪ > 0 and increase by suction ܭ௪ < 0. 
The effect of magnetic field on the skin friction, heat transfer and mass flux diffusion is less than the effect of mass 
transfer. 
The temperature and concentration profiles get affected by Prandtl number and Schmidt number, respectively. 
To get better results, that is, to get better approximations, HAM can offer us large flexibility and great freedom to 
choose better auxiliary linear operator (ℒ), nonzero auxiliary parameters (ℏ), spatial-scale parameter (ߛ) for 
satisfying the rule for solution expression and initial approximations. 
With the help of high-speed computers and symbolic computation software like MATHEMATICA, Maple, etc., 
the HAM might become more powerful and perfect analytic tool to solve rigorous non-linear problems in science 
and engineering. 
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